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Abstract:  
 

Global stability of disease-free equilibrium (DFE) of a deterministic epidemiological model 

describes the state of no infection that can eventually be reached in the absence of intervention, 

suggesting that the system can be deliberately intervened. This paper presents a global stability 

analysis of DFE, 0E  obtained from an acute hepatitis C virus (HCV) transmission dynamics 

model that incorporates the dynamic effectors: immune response, hepatocytes proliferation and 

spontaneous clearance of the virus. The analysis was accomplished with 0R  calculated from the 

model system of equations at 0E   using Metzler matrix method. With the parameter threshold 

0R , being a determining factor of the transmission of HCV infection, both the analytical results 

and simulations results have established the conditions for global stability of DEF. Precisely, the 

results show that the basic reproductive number, 0R   remains below unity, 10 R , despite initial 

values of the state variables. Thus, there should be a timely strategic intervention to eradicate 

the disease by ensuring that the basic reproductive number is strictly less than unity.  
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1. Introduction 

Hepatitis C infection is a disease caused by 

hepatitis C virus (HCV) that was recognized 

in 1983 (Choo et al., 1989; Purcell, 1997), 

which is one of the well-known types of 

viruses that trigger liver inflammation, 

ultimately leading to hepatic loss. The 

disease has been persistently a world health 

tragedy as about 150 to 200 million people 

are infected with HCV worldwide. This 

triggers death of at least 350,000 people 

each year from HCV-related liver 

complications caused by liver cirrhosis and 

hepatocellular carcinoma (Perz et al., 2006). 

Overall, this is attributed to absence of 

vaccine as the virus mutates very rapidly 

and absence of reliable medication that can 

bring about 100 percent sustained virologic 

response (SVR) to infected persons. 

Moreover, poor awareness of existence and 

mode of transmission of the disease; and 

insufficient access of medical services by 

the majority of infected people exceedingly 

contributes to the world health tragedy. Of 

the world population, the prevalence rate of 

HCV infection is below 2 percent  in 

developed countries such as Australia and 

most West Europe countries(Alter, 

2007;Cornberg et al., 2011; Sievert et al., 

2011). In most parts of Eastern Europe, 

Latin America, countries formerly under the 

Soviet Union, some African countries, the 

Middle East and South Asia, the HCV 

prevalence rate is at least 3 percent( Shepard 

et al., 2005; Qureshi et al., 2010; 

Kershenobich et al., 2011; Sievert et al., 

2011). In Africa, it generally ranges from 

0.1 percent to17.5percent depending on the 

country and genotype. Egypt, for example, 

has the prevalence rate 17.5 percent whereas 

Zambia, Kenya, Malawi and South Africa 

have the lowest rates (less than 1 percent ) 

(Karoney and Siika, 2013). 

The channels of HCV transmission are 

blood, blood products such as red blood cell 

concentrates, platelets, plasma and 

cryoprecipitate, tissue and organs and unsafe 

medical services generally in healthcare 

provision centers. In developing countries, 

the most common channels of transmission 

are injection drug use (IDU) and unsafe 

injection practices (Williams et al., 2011) 

while IDU is the most common channel in 

developed countries. 

To date, mathematical modeling has proven 

to be very important and thus a reliable 

mainstay in the study of the origin and 

spread of infectious diseases. The analysis 

of models helps to obtain additional 

understanding of the diseases dynamics, 

which can facilitate search for proper control 

strategies. The study of the disease 

dynamics through mathematical modeling 

and analysis of the model helps to address 

clearly the origination and development of 

viruses (Liuet al., 2013). Moreover, the 

analysis of these models helps to examine 

the dynamic behaviour of diseases from 

which we can understand how various 

dynamic effectors influence infection 

development with time. Therefore, 

mathematical modeling can help in figuring 

out decisions that influence theories and 

practices in relation to disease management 

and control (Tumwiine et al., 2007).  

Similarly, modeling of HCV dynamics has 

provided further insight into the origination 

and spread of the virus; and the effect of 

infection in communities worldwide. This 

has helped pharmacologists to develop 
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medicines in an attempt to treat infected 

people though this has not been 100percent 

successful (i.e., without 100 percent SVR). 

In literature, a number of mathematical 

models have been developed to study the 

dynamics of HCV with various dynamics 

effectors, whereby some have combined the 

effectors: host immune response, 

hepatocytes proliferation, spontaneous 

clearance of the virus and antiviral therapy 

(Newmann et al., 1998; Avendano et al., 

2002; Dahari et al. 2005c; Dahari et al., 

2007a ; Dahari et al., 2007b; Ismail et al. 

2017; Ismail and Luboobi, 2019). Besides, 

global stability analysis of in-vivo HCV 

models steady states has been done as 

shown in literature (Ismail et al, 2016a: 

Ismail and Luboobi et al, 2017b; Cheng et 

al, 2015; Miao et all, 2016; Nangue, 2019; 

Nangue et al, 2019a; Nangue, 2019b) and 

found that they are stable. With these 

available models, efforts to find suitable 

control measures have not guaranteed its 

eradication yet. Thus, research in this area is 

ongoing. In this paper, no new model has 

been presented; instead, we have performed 

global analysis of only DFE of an in-vivo 

HCV dynamics model developed by Ismail 

and Luboobi (2019) has been presented in 

order to acquire further insight of its 

pathogenesis and thus aid search of suitable 

control measures. The model steady state 

DFE has been chosen merely for simplicity 

of analyses and due to its indication that the 

disease disappears in the long run, which 

establishes the fact that early inteventation 

becomes more successful. 

Some significant analytical results of the 

model are the disease-free equilibrium 

(DFE), endemic equilibrium (EE) and basic 

reproductive number 0R . The parameter 

0R . is a measure of disease transmissibility 

in a completely susceptible population; it 

helps in the investigation of asymptotic 

behaviour of the model at the states DFE 

and EE. DFE is the equilibrium state that 

describes the absence of disease while EE is 

the state that describes disease prevalence. 

0R  has been one of the keys and most 

frequently used metrics to investigate the 

dynamics of an infectious disease (Keeling 

and Grenfell, 2000; Heesterbeek, 2002; 

Heffernan et al., 2005; Roberts, 2007; Pellis 

et al., 2012). It is an indicator of the 

transmissibility of disease infectious agents. 

Definitely, through the model equilibria 

together with the parameter 0R , one can 

determine whether or not the DFE is 

globally asymptotically stable; and so the 

conditions for either extinction or 

prevalence of the disease can be established. 

This paper presents a global stability 

analysis of the steady state DFE for an in-

vivo HCV dynamics model that incorporates 

the dynamic effectors host body immune 

system response, spontaneous clearance of 

the virus and proliferation of  hepatocytes 

(Ismail and Luboobi, 2019). In essence, this 

will provide further insight into the disease 

progression, where it is revealed that the 

disease will go to extinction in the long run 

in the absence of intervention. Thus, 

pharmacologists can design appropriate 

medications that can be used as therapies to 

combat the disease.  

2. The Model  

At this juncture ,we briefly reiterate some 

significant preliminaries and few analytical 
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results of a deterministic mathematical 

model formulated to investigate the effect  

of immune response and hepatocytes 

proliferation on the transmission dynamics 

of HCV in the acute stage of infection 

(Ismail and Luboobi, 2019). These dynamic 

features are very important for the 

achievement of global analysis of the model 

equilibrium state. 

 

2.1   Description of Dynamics 

The model incorporated four (4) 

compartmental dynamic classes: susceptible 

hepatocytes ( S ), infected hepatocytes ( I ), 

free hepatitis C viruses (V ) and CD8+ T 

cells (T ). In the presence of HCV infection, 

susceptible hepatocytes ( S ) are produced at 

a rate , die naturally at a rate S1 and are 

infected by the interaction with the virus at a 

rate SV . The infected hepatocytes die 

naturally at a rate I1  and produce free 

viruses at a rate I . The susceptible 

hepatocytes and infected hepatocytes 

proliferate logistically at a maximum 

proliferation rate   to allow the liver grow 

till a maximum size maxN . The infected 

hepatocytes die due to infection at a rate 

I and recover spontaneously at a rate I . 

The viruses die naturally at a constant rate 

V2 . In the HCV infection period, the 

CD8+ T cells are produced logistically at a 

rate so as to kill the infected hepatocytes. 

The CD8+ T cells kill infected hepatocytes 

at a rate IT  and die naturally at a rate 

T3 . 

The state variables and parameters symbols 

used in the model are defined in Table 1 and 

Table 2 respectively. 

Table 1: Variables’ Descriptions 

Variable Definition   

S  Susceptible hepatocytes 

I  Infected hepatocytes 

V  Hepatitis C viruses 

T  CD8+ T cells 
 
 
 
 

 

Table 2: Parameters’ Descriptions 

Parameter Definition 

  Infection rate 
  Production rate  of viruses from infected hepatocytes 

  CD8+ T cells destructive rate of infected hepatocytes 

  Recruitment rate of susceptible hepatocytes 

  Production rate of CD8+ Tcells 

1  Natural death rate of susceptible and infected hepatocytes 

2  Natural death rate of  hepatitis C viruses 

3  Natural death rate of CD8+ T cells 

  Spontaneous recovery rate of infected hepatocytes 

  Hepatitis C disease-induced death rate of infected hepatocytes  

  Maximum proliferation rate of susceptible and infected hepatocytes 

maxN  Maximum level of susceptible hepatocytes population due to cell proliferation 

mT  Maximum level of CD8+ T cells population 
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From the description of dynamics and the 

symbols for state variables and parameters 

defined in Table 1 and Table 2 respectively, 

we established the system of ordinary 

differential equations 1-4. In this case, 

Equation 1 models the uninfected liver cells 

population; Equation 2, the infected liver 

cells population; Equation 3, the viral load 

and Equation 4, the CD8+ T cells 

population. 
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provided that 
1  . It was also proved 

that the solution set )}(),(),(),({ tTtVtItS  
contains only non-negative values in   

0t .Therefore, it was established that the  

model system 1- 4   is epidemiologically and 

mathematically realistic (Hethcote, 2000). 

 

 

 

3. Analysis of the Model 

3.1   Existence of Disease-Free 

Equilibrium, 0E  

The disease-free equilibrium point describes 

the state of absence of HCV infection. It is 

obtained by equating the derivatives of the 

model equations equal to zero. Thus, the 

model system 1- 4   becomes: 
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When there is no HCV infection, 0=V . 

Then this produces: 0=I , 0=T  and 
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Since 0=I , then 
maxNS = . Thus, the 

disease-free equilibrium exists at 0E ; and is 

given by  
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This implies that the whole hepatic cells 

population consists of merely susceptible 

hepatocytes at this state.  

3.2   Basic Reproductive Number, 0R   

The transmission of an infectious disease in 

a population is a global concern. Thus, 

Heesterbeek and Dietz (1996) introduced 

most noteworthy and esteemed ideas to 

mathematical epidemiology. One of these 

ideas is the basic reproductive number, 0R , 

which is a measure of the potential for 

disease transmission in a population. It 

represents the average number of new 

infections caused by an infected individual 

introduced into an entirely susceptible 

population. Precisely, it denotes the average 

number of infected hepatocytes produced by 

an infectious hepatocyte in an entirely 

susceptible hepatic cells population. 

Using the next generation operator method 

described by Diekmann and Heesterbeek 

(2000) and  subsequently examined by Van 

den and Watmough (2005), the basic 

reproduction number, 0R  of the model 

system of equations 1- 4  was determined. 
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Inverting Y  produces 
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3.3 Asymptotic Stability of Disease-Free 

Equilibrium, E0 

 

Here, we determine the conditions under 

which the disease free equilibrium is 

asymptotically stable or unstable. 

Asymptotic stability denotes the state where 

solutions starting arbitrarily in the close 

vicinity of the equilibrium remains in the 

close vicinity of the equilibrium and tends to 

the equilibrium over time  t0  whereas  

instability means the state where solutions 

starting arbitrarily in the close vicinity of the 

equilibrium do not tend to it over indefinite 

time. Also, if neighboring initial conditions 

of a fixed point remain in the close vicinity 

of that point over definite time the point is 

said to be locally stable; and if they remain 

in the close vicinity of it over indefinite time 

it is said to be globally stable 

 

3.4 Global Stability of Disease-Free 

Equilibrium, E0 

Here, we establish a condition for the global 

asymptotic stability (GAS) of DFE for 

Hepatitis C virus infection. This means we 

have to prove that the condition for the GAS 

is 10 R . The analysis is achieved by the 

Theorem 1 and Metzler matrix method. 

Here, a Lyapunov function or Comparison 

method could be used, but the Lyapunov 

function method has been extensively used. 

Theorem 1: The disease-free equilibrium, 

0E
 

of the HCV model system 1- 4   is 

globally asymptotically stable (GAS) if 

10 R . 

Proof: To prove the theorem, we use the 

equations of the system 1- 4  and the 

approaches of Kamgang and Sallet (2008) 

and Dumont (2008). Therefore, we can write 

the system 1- 4  in the following manner: 
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where sX
 
is the vector denoting the state of 

different compartments of non-transmitting 

classes while the vector iX
 
denotes the state  

of different compartments of transmitting 

classes. Thus, we have 
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By direct computation, we find that the 

eigenvalues of 
1A  are max1 N−

 
and 

3− , which are all negative and real. 

Furthermore, we see that
2A  is a Metzler 

matrix as the entries in the leading diagonal 

are all negative and the off-diagonal entries 

are all positive. In respect of this, the DFE, 

0E
 
of the model system 1- 4   is globally 

asymptotically stable if 10 R  in the region 

and unstable if 10 R . 

In this case, we find that if the number of 

new HCV infections is greater than one, the 

disease will persist. Conversely, the disease 

will die out if the number of new infections 

is less than one  

 

3.5   Numerical Simulations 

This section presents selected numerical 

simulations of the HCV dynamic model to 

certify the analytical results. These are 

graphical representations demonstrating the 

dynamical behaviour that reflect variations 

in the actual physical situations. The 

simulations have been performed using the 

ode 45 MATLAB solvers for first 

order differential equations with most 

parameter values adopted from literatures. In 

particular, we have performed simulations of 
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the state variables and basic reproductive 

number,  at given constant parameter 

values so as to illustrate the globally 

asymptotic behaviour and conditions for the 

global stability of disease free equilibrium 

(DFE), 0E  respectively. This was achieved 

using the following parameter values: 

0003.0= , 05.0= , 000001.0= , 

009.03 = , 14.01 = , 000034.0= , 

02.0= , 100= , 0001.0=  and 2= , 

1000max =T  and 1000max =N . Some of 

these parameter values were used for the 

analysis of the HCV dynamics model 

proposed by Ismail and Luboobi (2019) 

while others were merely estimated. 
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Figures 41−  illustrate plots of susceptible 

hepatocytes, infected hepatocytes, HCV and 

CD8+ T cells loads with respect to time in 

days respectively. Here, it is observed that 

from various initial values of each state 

variable, the value of it approach the same 

equilibrium point over indefinite time . 

Precisely, the susceptible hepatocytes 

Figure 1: Graph of susceptible hepatocytes 

load with respect to time at various initial 

conditions,  

Figure 2:  Graph of infected hepatocytes 

load with respect to time at various initial 

conditions, 0I  

Figure 3(a): Graph at various of HCV 

load with respect to time initial 

conditions, 0V  

 

Figure 3(b): Graph of HCV load with 

respect to time at various initial 

conditions, 0V  

 
 

Figure 4: Graph of CD8+T cells load with 

respect to time at various initial 

conditions, 0T  
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quantities approaches a non-zero 

equilibrium point (Figure 1) while the 

infected hepatocytes, HCV and CD8+ T cells 

quantities all tend to a zero equilibrium 

point over indefinite time  (Figures 2, 3(a), 

3(b) and 4 respectively). Consequently, all 

equilibrium quantities of the state variables 

correspond to the disease-free equilibrium, 

, as shown in the analytical results. 
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In Figure 5, it is observed that the basic 

reproductive number 0R  varies with 

hepatocytes proliferation rate,  , whereby it 

is found that the increase of   generally 

causes the value of 0R  to increase; and vice 

versa. Moreover, it is seen that at if Qa =  

the value of 0R  equals to unity; but when 

Qa   it is seen that 10 R . Conversely, 

when Qa  , 0R  is greater than unity, i.e. 

10 R . In Mathematical Epidemiology, this 

implies that the disease exterminates if and 

only if Qa   (or 10 R ) and prevails in the 

hepatic cells population if and only if Qa   

(or 10 R . More accurately, we state that 

the HCV infection goes to extinction when 

10 R  ( Qa    and predominates when 

10 R  ( Qa  . 

 

4. Conclusion  

This paper, presents global stability analysis 

of a deterministic mathematical model, 

which is descriptive of the transmission 

dynamics of hepatitis C virus (HCV) 

infection with hepatocytes proliferation, 

body immune response and spontaneous 

clearance of the virus. In particular, the 

stability of disease-free equilibrium (DFE) 

was analyzed and found it to be globally 

asymptotically stable if  10 R  and unstable 

if 10 R  irrespective of initial values of the 

state variables. This means that the disease 

disappears when the basic reproductive 

number 0R  is strictly less than or equal to 

unity; but it prevails if 0R  is greater than 

unity. Besides, some numerical simulations 

of the model relating to the global stability 

of DFE and 0R  were performed and the 

results found to comply with the analytical 

ones. Specifically, it was established that the 

neighboring initial condition of DFE 

remains in the close vicinity of it over 

indefinite time, which suggests existence of 

global asymptotic stability of the model 

equilibrium point, 0E . Furthermore, we 

established the condition for global stability 

of DFE, which is 10 R  for certain values 

of hepatic cells proliferation rate, suggesting 

existence of a fixed set of parameter values 

for which the condition 10 R  holds. Thus, 

it is recommend that there should be found 

ways to ensure that 0R  is strictly less or 

Figure 5: Variation of the basic 

reproductive number,  with 

hepatocytes proliferation rate, . 
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equal to unity for the infection to go to 

extinction.  
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