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Abstract 

The results of investigations from a complete analysis of ANN application on Total Electron 

Content (TEC) prediction are presented in this paper. TEC is important in defining the 

ionosphere and has many everyday applications, for example, satellite navigation, time delay 

and range error corrections for single frequency Global Positioning System (GPS) satellite 

signal receivers. The total electron content (TEC) in the ionosphere has been measured using 

GPS. GPS are not installed in every point on the earth to make global TEC measurements 

possible. As a result, it is crucial to have certain models that can aid to get data from places 

where there is not any in order to comprehend the global behavior of TEC. Neural Network (NN) 

models have been shown to accurately anticipate data patterns, including TEC. The capacity of 

neural networks to represent both linear and nonlinear relationships directly from the data being 

modeled is what makes them so powerful. The survey from literature reveals that, Levenberg-

Marquardt algorithm is preferred and used mostly because of its speed and efficiency during 

learning process, and that ANN showed a good prediction of TEC compared to the IRI model.  

As a result, NNs are suitable for forecasting GPS TEC values at various locations if the model's 

input parameters are well specified. 
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INTRODUCTION 

The sun, which provides energy for life on 

Earth but also causes space weather, has an 

impact on the Earth's atmosphere (Chauhan 

et al., 2011; Leong et al., 2011; Oron et al., 

2013; Okoh et al., 2019). Space weather 

refers to any and all states and events caused 

by the Sun in near-Earth space and the upper 

atmosphere, which can disrupt space-borne 

and ground-based technological systems 

(Kataoka and Pulkkinen, 2008; Wik et al., 

2009; Shenvi and Virani, 2023; Li and Wu, 

2023), and which can have an impact on 

human existence (Hanslmeier, 2002). Users 

of equipment such as televisions, radios, and 

computers, as well as anyone who uses 

Global Positioning System (GPS) in any 

manner, are affected by space weather 

(Sulungu et al., 2018b). In addition, space 

weather has an impact on all passengers 

flying in jet aircraft in high-latitude zones in 

both hemispheres (Hanslmeier, 2002). 

Induced electrical currents in long undersea 

communications cables, long-haul 

telecommunication lines, and certain fiber-

optic systems are among the other 

disruptions caused by space weather 

phenomena (Wik et al., 2009). 

 

Disturbances in the systems indicated above 

are due to changes in the concentrations of 

charged particles at different ionospheric 

heights induced by solar influences 

(Hanslmeier, 2002; Adolfs and Hoque, 

2021; Ozkan, 2022), which alter the 

reflection, absorption, or transmission of 

electromagnetic waves through it. The 

ionosphere is the part of the atmosphere that 

is ionized, containing free electrons and 

positive ions (Kelley, 2009; Smirnov et al., 

2023). The quantity of positively charged 

ions and negatively charged electrons is 

normally equal, resulting in an electrically 

neutral medium (Memarzadeh, 2009). 

During the ionization process, free electrons 

and ions are produced by the interaction of 

Extreme Ultraviolet (EUV) and X-ray 

radiations with the upper atmospheric 

neutral gas. The number of electrons and 

ions in the ionosphere is maintained by a 

continuous process of gaining and losing 

between their rate of production, which is 

controlled by the intensity of solar radiation 

and incident particles, and the rate at which 

newly freed electrons and ions recombine to 

produce reconstructed neutral particles 

(Eddy, 2009). Because of the free electrons, 

the ionosphere is an inhomogeneous 

propagation medium for electromagnetic 

waves, altering satellite signal transmission 

by modifying their velocity and direction of 

travel. The impact of the ionosphere, 

according to Norsuzila et al., (2010a) is that 

it can generate range-rate inaccuracies for 

GPS satellite users that require high 

accuracy data. The severity of ionospheric 

impacts is determined by a variety of 

factors, including the user's location, the 

time of day, the season, the status of the 

earth's geomagnetic field, and the level of 

solar activity (Leong et al., 2011). 

 

A variety of instruments, including the GPS, 

have been used in studies to better 

understand the physical and chemical 

processes that occur in the ionosphere and 

plasmasphere (GPS) (Chen et al., 2022). 

The GPS's main purpose is to provide users 

with global navigation, positioning, and time 

information (Norsuzila, 2010a; Sulungu et 
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al., 2018b). However, the GPS is currently 

being used to provide data on the Total 

Electron Content (TEC) of the ionosphere 

(Liu et al., 2013). TEC is important for 

defining the ionosphere and has a variety of 

practical uses, including satellite navigation, 

delay time, and range error corrections for 

single frequency GPS (Bhuyan and Borah, 

2007; Guoyan et al., 2021; Sulungu et al., 

218b; Xiong et al., 2021). 

 

The TEC is the total number of electrons 

integrated along the path from a terrestrial or 

spacecraft receiver to each GPS satellite and 

is measured in TECUs, where 1TECU = 1 x 

1016 electrons/m2 (Chauhan et al., 2011; 

Guoyan et al., 2021; Lee et al., 2021; 

Norsuzila et al., 2010b; Tang et al., 2022). It 

serves as a measure of ionospheric 

variability. The TEC is given by; 

dSNTEC
S

S
e=

2

1

                                        (1) 

where Ne denotes the ionospheric electron 

density and S the signal propagation path 

length between satellite and receiver 

positions S2 and S1, respectively. 

The ionosphere causes a transmission time 

delay in electromagnetic waves that pass 

through it. The TEC and the frequency of 

electromagnetic waves are connected to the 

magnitude of this effect (Gao and Liu, 

2002). According to Hunt et al. (2000), the 

temporal delay generated on a radio 

frequency signal travelling between S1 and 

S2 can be calculated as follows: 
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where c represents the speed of light in 

vacuum, me represents the electron mass, e 

represents the charge of an electron, f 

represents the transmitted frequency, and ε 

is the permittivity constant. In meters, the 

ionospheric range delay (phase advance) is 

given as: 

tcR =                                                    (3) 

where ΔR is the amount that would be added 

to the range if the range was calculated 

under the assumption that the radio signal 

travels at the speed of light. From (2) and (3) 

we get the following: 

TEC
f

R
2

3.40
=                                          (4) 

A dual-frequency GPS receiver measures 

the difference in ionospheric delay between 

the two signals, L1 and L2 with frequencies 

f1 and f2, which are obtained from the 

fundamental frequency, fo = 10.23 MHz, so 

that: 

f1 = 154fo = 1575.42 MHz and 

f2 = 120fo= 1227.60 MHz 

For a dual-frequency GPS receiver, the 

group delay is given as:  
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P1 and P2 are pseudo ranges visible on L1 

and L2 transmissions, respectively, and f1 

and f2 are the corresponding high and low 

GPS frequencies.                                                          

 

To get the TEC, equation (5) can be written 

as follows (Sulungu et al., 2018b; Sulungu 

and Uiso, 2019): 
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TEC is divided into two types: slant TEC 

(TECs) and vertical TEC (TECv). Because 

different GPS satellites are viewed at 

arbitrary elevation angles, TECs is a 

measure of the total electron content of the 
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ionosphere along the ray path from the 

satellite to the receiver measured at differing 

elevation angles. To compare the electron 

contents of pathways with various elevation 

angles, the TECs are converted into 

comparable TECv by assuming that the 

ionosphere is compressed into a thin shell 

with a shell height h, as shown in Figure 1. 

 
Figure 1: Ionospheric thin shell (Shim, 2009) 

 

At altitude h, the TECv are allocated to an 

ionospheric pierce point (IPP), which is the 

intersection of the line-of-sight ray and the 

thin shell. TECv is frequently calculated 

from TECs using the following mapping 

function (Shim, 2009): 

( ) ,TECseMTECv =                                (7) 
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Here, e represents a satellite's elevation 

angle, h represents the height of the 

ionospheric shell, and RE represents the 

Earth's mean radius. 

 

However, GPS receivers are not installed at 

every location on the earth to allow global 

TEC measurements. As a result, it is 

essential to have some models that can help 

gather data from regions with no receiver in 

order to comprehend the TEC's global 

behavior (Sulungu and Uiso, 2019). The 

International Reference Ionosphere (IRI) is a 

globally utilized empirical ionospheric 

model for TEC forecasting. However, in 

places where data is poor, the IRI model 

does not provide accurate forecasts (Akir et 

al., 2015; Watthanasangmechai et al., 2012). 

As a result, models based on Neural 

Networks (NN) are used to forecast TEC 

(Sivavaraprasad et al., 2020). Neural 

Networks (NNs) are commonly employed in 

predictive modeling because of their 

learning and pattern recognition capabilities. 

They have been shown to be powerful tools 

that can learn trends and patterns in specific 

data and, as a result, accurately predict 

future trends and patterns for that data 

(Adolfs and Hoque, 2021). It has also been 

demonstrated that by altering the weights, a 

neural network may be trained to execute a 

certain purpose (Demuth and Beale, 2002; 

Okoh et al., 2016). The capacity of neural 

networks to capture both linear and 

nonlinear relationships directly from the 

data being modeled is one of its most 

powerful features (Okoh et al., 2016). 

 

Therefore, the results from a comprehensive 

application of Artificial Neural Network 

(ANN) on TEC prediction are presented in 

this study. In comparison to other models 

such as the International Reference 

Ionosphere, the applicability of ANN in 

predicting TEC is discussed. The study also 

highlighted a number of authors' 

perspectives on the use of ANN in TEC 

prediction.  
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Ionospheric Modeling 

Several models have been created over the 

last several decades to better understand the 

physics that affects the dynamics of the 

ionosphere. Empirical models are one of the 

sorts of models that have been developed; 

they provide an average ionosphere behavior 

based on observable data. However, the 

amount of data and the spatial and temporal 

coverage of the data that are employed in 

their construction limit these models (Shim, 

2009). Despite these limitations, empirical 

models are extensively utilized due to their 

simplicity (Sulungu et al., 2018a). The 

NeQuick model (Nigussie et al., 2012) and 

the International Reference Ionosphere (IRI) 

model (Bilitza, 1986) are two examples of 

such models. 
 

The IRI model 

The International Reference Ionosphere 

(IRI) was established by the Committee on 

Space Research (COSPAR) and the 

International Union of Radio Science 

(URSI) in an effort to create an international 

standard for the specification of ionospheric 

parameters based on all available data from 

both ground-based and satellite observations 

from around the world (Kenpankho et al., 

2011). The model is based on experimental 

evidence gathered from all available ground 

and space data (Bilitza et al., 2014). As new 

data and modeling methodologies become 

available, the IRI model is regularly 

upgraded (Sulungu et al., 2018a), resulting 

in many major editions of IRI. 

 

There are three topside options that the IRI 

model employs to predict TEC, these are the 

NeQuick option, the IRI-2001-corrected 

option, and the IRI-2001 option. The 

NeQuick option is the default option for the 

IRI model in its standard form (Leitinger et 

al., 2001; Rathore et al., 2015). The inputs 

of the IRI model are latitude and longitude, 

date and time in UT, and altitudes ranging 

from 60 to 2000 km. The IRI model, on the 

other hand, has a lot of outputs, such as 

electron density, electron temperature, ion 

composition, ion temperature, F2-layer peak 

height, density, and TEC (Kumar et al., 

2015). The IRI model's accuracy in a 

specific location is determined by the 

availability of trustworthy and plentiful data 

in that area (Adewale et al., 2011). For 

example, because of the vast number of 

stations in the northern mid-latitude region, 

the model could make accurate predictions 

there (Bilitza and Reinisch, 2008). 

 

Artificial Neural Network (ANN) 

ANN is made up of several simple 

processing units (layers) that communicate 

with each other by transmitting signals via a 

large number of weighted connections 

(Unnikrishnan et al., 2018). Each layer takes 

input from its neighbors or external sources 

and uses it to create an output signal that is 

transferred to the next layer. The neural 

system is made up of three layers: an input 

layer that receives data from outside the 

neural network, a hidden layer that keeps the 

input and output signals within the neural 

network, and an output layer that sends data 

out of the neural network (Anderson, 1997; 

Galushkin, 2007; Kröse and van der Smagt, 

1996). 

 

Topologies of Neural Networks 

Feed-forward networks and recurrent 

networks are two types of neural networks 
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that differ in their layer connections and data 

propagation patterns. 

 

Layers in feed-forward networks are 

connected in one direction to allow data to 

flow from the input to the output layer and 

do not allow closed paths inside the network 

connections; examples include Perceptron 

and Adaline (Haykin, 2001). In a feed-back 

connection, some or all layers have 

connections that allow them to move 

backwards to the preceding layer 

(Habarulema, 2010; Kröse and van der 

Smagt, 1996) (Figure 2). 

 
Figure 2: Three layers of a feed forward network 

(Habarulema, 2010) 

 

On the other hand, in recurrent networks, 

there are no feedback connections. The 

network's dynamical features are crucial in 

this type of network. In some circumstances, 

the activation values of the units go through 

a relaxation process, resulting in the network 

reaching a stable state where the activation 

values do not vary. In some applications, the 

change in the activation values of the output 

neurons is significant enough that the 

network's output is determined by its 

dynamical behavior (Kröse and van der 

Smagt, 1996; Pearlmutter, 1990). These 

include the Elman network (Figure 3) which 

feeds some of the hidden unit activation 

values back to the input layer, to a group of 

extra neurons known as the context units, 

and the Jordan network that feeds output 

values back to the input layer, to a set of 

extra neurons known as the state units 

(Figure 4). 

 
Figure 2: The Elman network (Kröse and van der 

Smagt, 1996) 

      

Figure 3: The Jordan network (Kröse and van der 

Smagt, 1996) 

 

However, many real-world problems are 

solved when feed forward network 

topologies are used instead of recurrent 

networks, which are more difficult to 

employ (Pearlmutter, 1990). 

 

Artificial neural networks training 

The construction of a neural network should 

be done in such a way that when a set of 

inputs is applied, the desired set of outputs is 

produced. This is accomplished by either 

clearly setting the weights based on a priori 

knowledge, or by training the machine by 

feeding it teaching configurations and 
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allowing it to adjust its weights based on 

some learning instructions. 
 

There are two types of learning in neural 

networks: supervised (associative) learning 

and unsupervised learning (self-

organization). 

 

Supervised (associative) learning is a sort of 

learning in which the network is changed 

based on output and target comparisons until 

the network output matches the target. An 

external trainer or the system containing the 

network (self-supervised) can offer these 

input-output pairings (Demuth and Beale, 

2002; Kröse and van der Smagt, 1996). 

 

Unsupervised (self-organization) learning, 

on the other hand, is a sort of learning in 

which an output is trained to respond to 

collections of patterns within the input by 

identifying statistically significant aspects of 

the population. The system creates its own 

representation of the incoming stimuli in this 

sort of learning, and there is no 

predetermined set of categories into which 

the patterns should be classified (Demuth 

and Beale, 2002; Haykin, 2001). 

 

Multi-layer feed-forward networks 

A neural network connection can be either a 

single-layer connection with significant 

constraints on the types of activities that can 

be done, or a multi-layer connection with 

more flexibility (Graupe, 2007; Hu and 

Hwang, 2002). 

 

To determine the network parameters, a 

variety of algorithms are used. In the field of 

neural networks, the algorithms are known 

as learning or teaching algorithms (Poulton, 

2001). Back-propagation and Levenberg-

Marquardt algorithms are two of the most 

well-known algorithms. Back-propagation 

learning rule was first proposed by 

Rumelhart, Hinton, and Williams in 1986 

(Rumelhart et al., 1986), where the errors 

for the hidden layer units are determined by 

back-propagating the errors of the output 

layer units. This is a gradient-based 

algorithm with a lot of variations. The 

Levenberg-Marquardt approach, on the 

other hand, is more efficient than back 

propagation since it saves time (Bishop, 

1995; Haykin, 2001; Poulton, 2001). 

 

Artificial Neuron's Major Components 

This section describes the major components 

of the artificial neuron using information 

from a variety of sources, including 

(Anderson and McNeill, 1992; Anderson, 

1997; Demuth and Beale, 2002; Galushkin, 

2007; Haykin, 2001). 

 

The weighting factors are the first 

component. Weights are network adaptable 

coefficients that control the strength of the 

input signal as perceived by the artificial 

neuron. They are numerical elements that 

connect the output value of a neuron to the 

next neuron to which it is connected. They 

are also a measure of an input's connection 

strength, which might change in response to 

different training sets, as well as a network's 

structure and learning rules. 

 

Summation function is the second 

component in which, if the inputs and 

weights are vectors that can be represented 

as X = [x1, x2... xn]
T and W = (w1, w2... wn), 

then, the summing function is calculated by 
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multiplying each component of the X vector 

by the corresponding component of the W 

vector and then adding up all the products. 

Thus: 


=

=+++=
n

i

iinn

T wxwxwxwxWX
1

2211 ................

 
.                                                                  (9) 

This summation must be passed on to the 

transfer or activation function for the 

summation result to vary with time. 

 

In the third component, when the product of 

the inputs and weights is obtained, the result 

is turned into the output via an algorithmic 

process known as the transfer function, 

which is often non-linear. The hyberbolic 

tangent (tanh) and a sigmoid function are the 

most widely employed activation functions. 

Scaling and limiting make up the fourth 

component. This is a procedure in which the 

outcome of the transfer function of the 

processing element passes through. It simply 

adds an offset after multiplying a scaling 

factor by the transfer value. Its core function 

is to make sure the scaled result doesn't go 

beyond a certain limit. This limiting is also 

in addition to any limitations imposed by the 

initial transfer function. 

 

In the fifth component, output function 

(competition), one output signal from each 

processing unit passes to hundreds of 

additional neurons. In most cases, the 

network's output is identical to the transfer 

function's output. During the process, some 

network topologies' transfer outcomes may 

be adjusted to accommodate competition 

among neighboring processing nodes. 

Neurons can compete against one another in 

this process. The competition's goal is to 

figure out which artificial neuron will be 

active in generating an output or which 

processing unit will be involved in the 

learning or adaption process. 

 

The error function and back-propagated 

value make up the sixth component. The 

obtained output always differs from the 

targeted output during the process of 

determining the output, and the difference is 

calculated. The error function then adjusts 

the error between these two outputs to 

reflect the network design. Most basic 

neural network topologies employ this error 

directly; however, some of them square the 

error while keeping its sign, while others 

adjust the raw error to serve their special 

needs. The error of the generated artificial 

neuron is then propagated backwards to a 

previous layer by being sent through the 

learning function of another processing 

element. After the learning function has 

scaled this back-propagated value, it is 

multiplied against each of the incoming 

connection weights in order to change them 

before the next learning cycle. 

 

The learning function is the final 

component, and it is used to adjust the 

weights of the input connections in order to 

obtain certain outputs. This function is also 

known as the adaption function or the 

learning mode, and it is used to change the 

variable connection weights on the inputs of 

each processing unit using a neural-based 

algorithm. 

 

Single-node multilayer perceptron 

Figure 5 depicts a multilayer perceptron 

(MLP) network. 
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Figure 4: An example of a single node in a MLP 

network (Demuth and Beale, 2002) 

 

To obtain the output iy n= , the inputs 

, 1,2,.......kx k K=
 

to the neuron are 

multiplied by weights and added together 

with the constant bias factor  . 

    
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The resulting ni is used as an input to the 

activation function , and the final 

output is as follows: 

                  (11) 

 

Multilayer Perceptron with more than 

one node  

Figure 6 depicts an MLP network generated 

when many nodes are joined in parallel and 

series. The activation function g has been 

employed in both layers, as shown in the 

Figure 6, and the superscripts in θ, n, or w 

specifies the network layer. The equation for 

the final output in Figure 6 can be 

determined by considering the expression 

for the output value given in equation (11). 

The first inputs and weights produce the 

following output: 
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The final output yi, i = 1, 2, can now be 

given as;  
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Figure 5: A multilayer perceptron network with one 

hidden layer 

 

When using a set of training samples that 

include input values px and desired (or 

target) output values pd , where p is the 

number of iterations, the network's output is 

always different from the target value. If 
py is the network's actual output, then 

p pd y- is the difference between it and its 

target output. The weights are changed 

based on these differences in order to 

achieve the best output values (Kröse and 

van der Smagt, 1996). 

 

The error function (least mean square error) 

is calculated using the summed squared 

error E given as; 

( )2
2

1
 −==

p

pp

p

p ydEE

               (14) 

where the index p ranges over the set of 

input patterns and Ep represents the error on 

pattern p. 

 

The Least-Mean-Square (LMS) approach is 

used to find the values of all the weights 

using a method called gradient descent in 

order to minimize the error function. A 

weight change is proportional to the 

negative of the derivative of the error 
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measured on the current pattern with respect 

to each weight (Kröse and van der Smagt, 

1996). 

j

p

jp
w

E
w




−= 

                                  (15) 

Where γ is the learning-rate parameter, 

which is a proportionality constant. To 

reduce the value of 
pE , the minus sign in 

equation (15) accounts for gradient descent 

in weight space. Equation (15) can be 

rearranged to give the following result: 
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From equation (10), 

jp
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and from (14), 
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Thus, 

j

p

jp xw =
 .                                   (19) 

where 
ppp yd −=   

 

Based on this relationship, the weight can be 

adjusted suitably for target and actual 

outputs of either polarity for input and 

output units of the network. 

 

Early stopping training approach 

The mean square error diminishes as the 

number of epochs increases in the back-

propagation process. This is due to the fact 

that, the multilayer perceptron learns in 

phases, ranging from simple to more 

complicated functions throughout the 

training session. If the training session is not 

interrupted at the proper point, the network 

may end up overfitting the training data. To 

circumvent this, the training data is divided 

into two parts: estimation (training) and 

validation (validation). The network is 

trained using the estimation part of the data 

and paused every now and then, and the 

validation part of the data is utilized to test 

the data after each training session. The 

estimation session is restarted for another 

period when the validation procedure is 

completed; the process is repeated until the 

optimal value is achieved (Demuth and 

Beale, 2002; Haykin, 2001). 

 

Studies based on Neural Networks 

approach 

Neural networks (NNs) are powerful 

predictive modeling tools that combine 

machine learning and pattern recognition 

capabilities. They can recognize patterns and 

trends in specific data and, as a result, 

correctly anticipate future trends and 

patterns in the data. Demuth and Beale 

(2002) and Okoh et al. (2016) demonstrated 

that a neural network may be trained to 

execute a certain purpose by altering the 

weights. The capacity of neural networks to 

capture both linear and nonlinear 

relationships directly from the data being 

modeled is one of its most powerful features 

(Okoh et al., 2016). 

 

The capability of neural networks in 

ionospheric modeling has been proved in a 

number of researches conducted in various 

locations. According to Okoh et al., (2016) 

in their study on a regional GNSS-TECv 

model over Nigeria utilizing neural 

networks, DST, SSN, and IRI-foF2 as input 
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layer neurons on the networks are effective 

in boosting the network performances. They 

implemented Levenberge-Marquardt 

backpropagation algorithm because of its 

speed and efficiency in learning. When 

comparing TEC predictions from the NN 

with the IRI model, Okoh et al. (2016) 

observed that, the developed model makes 

better predictions than the IRI model. 

Habarulema et al. (2007) used a feed 

forward network with back propagation 

algorithm and found that NNs are suitable 

for forecasting GPS TEC values at places 

inside South Africa, and that their results 

were able to predict the TEC values more 

correctly than IRI-2001. They also 

demonstrated that the NN model accurately 

forecasts the trend of GPS TEC diurnally 

and seasonally, while the created model 

overestimates or underestimates the TEC in 

some cases. The same study indicated that 

correlation coefficients between the NN 

modeled TEC and GPS TEC were more 

consistent as compared to those from the 

IRI-2001 model over South African region. 

When the verification data set used is within 

the training data set range, the NN based 

model's prediction accuracy is more 

apparent (Habarulema et al., 2011).  

 

Homam (2014) discovered that a network 

configuration that uses TEC values during 

lower solar activity had a lower Root-Mean 

Square Error (RMSE), as well as absolute 

and relative error, than a network 

configuration that uses TEC values during 

higher solar activity. Homan chose to use 

Levenberg-Marquardt back propagation 

algorithm due to its fast processing, 

although it needs more memory when 

compared with other algorithms. Leandro 

and Santos (2007) used the Levenberg-

Marquardt back-propagation algorithm to 

train the neural network model for regional 

vertical total electron content simulation 

utilizing the Brazilian network data. The 

findings revealed that the neural network 

model gave TEC value approximations with 

an average absolute error of 3.7 TECU and a 

standard deviation of 2.7 TECU. 

 

Sulungu and Uiso (2019) established a 

model for GPS TEC prediction across 

Eastern Africa using a neural network (NN) 

approach. They used the multi-layer 

perceptron neural network because of its 

speed and efficiency during learning 

process. According to their findings, the 

more input layer neurons that were added to 

the networks, the better the networks learned 

and produced the improved results. They 

also found that when sunspot numbers 

(SSN) and the IRI-NmF2 were incorporated 

as input neurons, correlation coefficients 

indicated that, the created NN model could 

accurately predict GPS TEC. Sulungu and 

Uiso (2019) also found that the generated 

NN model well predicted the diurnal 

variational pattern of the TEC parameter, 

and that the model closely matched the GPS 

TEC in most cases when compared to the 

IRI-2012 model. This result was also 

obtained by Sahu et al. (2021) on their study 

on prediction of TEC using NN, utilizing the 

Levenberg-Marquardt algorithm, over 

anomaly crest region Bhopal.  

 

Okoh et al. (2020) used a neural network 

approach to create a storm-time total 

electron content (TEC) model over the 
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African sector. They trained the network 

using Bayesian regularization 

backpropagation algorithm. In comparison 

to low and equatorial latitude regions, the 

model performed better in mid-latitude. 

Sivavaraprasad et al. (2020) studied the 

performance of TEC forecasting models 

based on Neural Networks (NN) across 

equatorial low latitude Bengaluru, India. 

They used Levenberg-Marquardt algorithm 

as the training technique due to its speed and 

efficiency in learning and found that the NN 

model was more accurate than IRI-2016 

model. Y By using Bayesian Regularization 

process according to Levenberg-Marquardt 

optimization, Cesaroni et al. (2020) 

forecasted Total Electron Content (TEC) 24 

hours ahead of time at a global scale. They 

obtained a very satisfactory result in terms 

of RMSE, ranging between 3 and 5 TECU. 

 

Tulunay et al. (2004) utilized the 

Levenberg-Marquardt backpropagation 

algorithm in training the Middle East 

Technical University Neural Network based 

models, to estimate 10-minute TEC 

variations during the high solar activity of 

2000-2001, and the NN model's sensitivity 

and accuracy were found to be good. They 

concluded that the methodologies they 

developed can be utilized to characterize the 

electromagnetic wave propagation medium 

for the purposes of planning and operation 

of radio systems. Watthanasangmechai et al. 

(2012) applied the Levenberg-Marquardt 

algorithm as the training function in their 

investigations on TEC prediction with 

neural networks for equatorial latitude 

stations in Thailand. Their results showed a 

good prediction of TEC by the NN model 

compared to the IRI-2007 model. Their 

findings also demonstrated that, large 

variations in TEC made it hard for the NN to 

learn during specific periods, and they 

linked this problem to the formation of an 

equatorial plasma bubble as well as day-to-

day TEC variations in the equatorial area. 

When Uwamahoro and Habarulema (2015) 

were modeling total electron content during 

geomagnetic storm conditions in South 

Africa, they trained the network using the 

Leverberg-Marquardt back propagation 

algorithm because of its time saving 

advantage during training and found that the 

choice of hidden node number could alter 

the NN prediction capability. 

 

Li and Wu (2023) developed an Ionospheric 

TEC Model with a storm option over Japan 

based on a multi-layer perceptron (MLP) 

neural network. The maximum RMSE was 

lower than 2TECU, while the corresponding 

RMSEs for the IRI exceeded 5TECU. 

Shenvi and Virani (2023) forecasted the 

ionospheric TEC using a multivariate deep 

long short-term memory (LSTM) model for 

different latitudes and solar activity. Their 

results showed that, LSTM predicted TEC 

with more accuracy than MLP. MLPs fail to 

predict accurately in cases where the data is 

noisy or turbulent, particularly during solar 

active years and during the occurrence of 

geomagnetic. Smirnov et al (2023) 

developed a neural network-based model of 

electron density in the topside ionosphere, 

and shows outstanding agreement with the 

observations, beating the IRI model, 

especially at 100-200 km above the F2-layer 

peak. An artificial neural network model 

developed by Ozkan (2022), based on 
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Levenberg-Marquardt backpropagation 

algorithm, for predicting VTEC over central 

Anatolia in Turkey, showed better 

performance than the global IRI-2016 

model. Adolfs and Hoque (2021) established 

a neural network-based TEC model capable 

of reproducing nighttime winter anomaly. 

NN model results were compared with the 

Neustrelitz TEC Model (NTCM), and the 

results showed that, the neural network 

model outperformed the NTCM by 

approximately 1 TECU. Okoh et al. (2019) 

developed a neural network‐based 

ionospheric model over Africa from 

constellation observing system by training 

the networks using the Bayesian 

regularization back‐propagation algorithm. 

After testing the usefulness of three solar 

activity indices (sunspot number, solar radio 

flux at 10.7‐cm wavelength [F10.7], and 

solar ultraviolet [UV] flux at 1 AU), the 

F10.7 and UV were more operative, and the 

F10.7 was chosen since it produced the 

smallest errors on the validation data set 

used. 

 

Several studies (Conway et al., 1998; 

Habarulema et al., 2007; Maruyama, 2009; 

Okoh et al., 2016; Watthanasangmechai et 

al., 2012) shown that, the NN model 

performs well when data is collected over a 

long period of time, at least one solar cycle 

(11 years). However, investigations by 

Leandro and Santos (2007) and Homam 

(2014) found that, the NN model can 

accurately predict GPS TEC even with data 

from shorter time periods. Therefore, from 

this survey of literature, it shows that, 

Levenberg-Marquardt algorithm is preferred 

and used mostly because of its speed and 

efficiency during learning process. It is also 

found that NN is able to forecast TEC values 

more correctly than the IRI model. 

 

CONCLUSION 

According to the literature survey, building 

a neural network should be done in such a 

way that, applying a set of inputs results in 

the desired set of outputs. This is 

accomplished by either clearly setting the 

weights based on a priori knowledge, or by 

training the machine by feeding it teaching 

configurations and allowing it to adjust its 

weights based on some learning instructions. 

The survey from literature reveals that, 

Levenberg-Marquardt algorithm is preferred 

and used mostly because of its speed and 

efficiency during learning process. It is also 

found that NN is able to forecast TEC values 

more correctly than the IRI model, as well 

as the trend of GPS TEC diurnally and 

seasonally, although the model over or 

underestimates the TEC in some cases. It is 

also clear that the number of hidden nodes 

chosen can have an impact on the NN's 

capacity to forecast. The research also has 

shown that, the NN model performs well 

when data is collected over lengthy periods 

of time, at least one solar cycle (11 years), 

while some investigations revealed that the 

NN model can predict GPS TEC even with 

data collected over shorter time periods. 

  

Therefore, the Levenberg-Marquardt 

algorithm is a popular optimization 

technique used for training artificial neural 

networks. It is an efficient method for 

minimizing non-linear least squares 

problems and is often employed for training 
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neural networks due to its fast convergence 

properties. 

 

However, after going through different 

literature on application of NN in predicting 

TEC, the following recommendations are 

made for future research: 

 

Investigation on the incorporation of 

temporal and spatial features to capture the 

dynamic nature of the Earth's ionosphere 

should be done. ANNs capable of 

processing spatiotemporal data might yield 

more accurate predictions. 

 

Exploring the potential of transfer of 

learning is essential, where knowledge 

learned from one region or dataset is 

transferred to improve predictions in another 

region with limited data. 

 

Investigation of techniques to adapt ANNs 

trained on data from one geographical 

location to be effective in different but 

related regions. 
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