ANTIMICROBIAL ACTIVITY OF SELECTED TANZANIAN MEDICINAL PLANTS
Abstract
Traditional medicines have been used in the treatment of infections for decades, but unlike most clinical antibiotics, they remain effective against microbial infections. Antimicrobial activity of selected medicinal plants was evaluated against selected Gram negative bacteria. The plants selected were Rhus natalensis, Lannea schweinfurthii, Tarchonanthus camphoratus, Toddalia asiatica, Solanecio cydoniifolius, Ziziphus mucronata and Cyanthnla orthocantha. The extracts were obtained by sequential extraction. The extracts were then assayed for antimicrobial activity using broth microdilution method. The results revealed that R. natalensis leaf ethyl acetate extract had antimicrobial activity with MIC values> 3.125mg mL-1 against all tested microorganisms. The leaf ethyl acetate extract of L. schweinfurthii showed significant antimicrobial activity against tested Gram negative bacteria, with MIC values that ranged from 1.563mg mL-1 to 6.25 mg mL-1. Interestingly, T. asiatica leaf methanolic extract had the highest antimicrobial activity with MIC values of 0.195 mg mL-1against P. vulgaris. The leaf methanolic extract of T. camphoratus had MIC value of 0.391mg mL-1against P. aureginosa. Despite weaker antibacterial activity, C. orthocantha leaf ethyl acetate extract exhibited a better antifungal activity against C. albicans at MIC value of 3.125 mg mL-1. These antimicrobial activity results agree well with the medicinal applications of the selected medicinal plants.References
Ackers, M.-L., Puhr, N. D., Tauxe, R. V., and Mintz, E. D. (2000). Laboratory-based surveillance of Salmonella serotype Typhi infections in the United States: antimicrobial resistance on the rise. Jama.283 (20): 26682673.
Aligiannis, N., Kalpoutzakis, E., Mitaku, S., and Chinou, I. B. (2001).Composition and antimicrobial activity of the essential oils of two Origanum species.Journal of agricultural and food chemistry.49 (9): 4168-4170.
Aloush, V., Navon-Venezia, S., Seigman-Igra, Y., Cabili, S., and Carmeli, Y. (2006). Multidrugresistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrobial agents and chemotherapy.50 (1): 43-48.
America, I. D. S. o. (2011).Combating antimicrobial resistance: policy recommendations to save lives.Clinical Infectious Diseases.52 (suppl 5): S397-S428.
Arnold, R. S., Thom, K. A., Sharma, S., Phillips, M., Johnson, J. K., and Morgan, D. J. (2011). Emergence of Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. Southern medical journal.104 (1): 40.
Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B., and Bartlett, J. (2009). Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of
America.Clinical Infectious Diseases.48 (1): 112.
Bratu, S., Landman, D., Haag, R., Recco, R., Eramo, A., Alam, M., and Quale, J. (2005). Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Archives of internal medicine.165 (12): 14301435.
Brusselaers, N., Vogelaers, D., and Blot, S. (2011). The rising problem of antimicrobial resistance in the intensive care unit.Annals of intensive care.1 (1): 1-7.
Bull, A. T., and Stach, J. E. (2007). Marine actinobacteria: new opportunities for natural product search and discovery. Trends in microbiology.15 (11): 491-499.
Clardy, J., Fischbach, M. A., and Walsh, C. T. (2006).New antibiotics from bacterial natural products.Nature biotechnology.24 (12): 15411550.
Costerton, J. W., Stewart, P. S., and Greenberg, E. (1999). Bacterial biofilms: a common cause of persistent infections. Science.284 (5418): 1318-1322.
Cross, A., Allen, J. R., Burke, J., Ducel, G., Harris,
A., John, J., Johnson, D., Lew, M., MacMillan, B., and Meers, P. (1983). Nosocomial infections due to Pseudomonas aeruginosa: review of recent trends. Review of Infectious Diseases.5 (Supplement 5): S837-S845.
Duraipandiyan, V., and Ignacimuthu, S. (2009). Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam. Journal of ethnopharmacology.123 (3): 494498.
Katerere, D. R., and Luseba, D.
(2010).Ethnoveterinary botanical medicine: herbal medicines for animal health. CRC
Press,
Korir R, K. C., GathirwaJ,WamburaM,Bii C (2012). In-vitro Antimicrobial Properties of Methanol extracts of three Medicinal Plants from Kilifi District - Kenya. African Journal of Health Sciences.20 (Number 1-2): 4.
Lakshmi, P. M., Bhanu, P. K., Kotakadi, V. S., and Josthna, P. (2015). Herbal and Medicinal Plants Molecules Towards Treatment of Cancer: A Mini Review. Advanced Journal of Ethnomedicine.2 (3): 136-142.
Landman, D., Bratu, S., Kochar, S., Panwar, M., Trehan, M., Doymaz, M., and Quale, J. (2007).Evolution of antimicrobial resistance among Pseudomonas aeruginosa,
Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY.Journal of antimicrobial chemotherapy.60 (1): 78-82.
Liu, X., Ashforth, E., Ren, B., Song, F., Dai, H., Liu, M., Wang, J., Xie, Q., and Zhang, L. (2010).Bioprospecting microbial natural product libraries from the marine environment for drug discovery.The Journal of antibiotics.63 (8): 415-422.
Lu, L.-C., Chen, Y.-W., and Chou, C.-C.(2005). Antibacterial activity of propolis against Staphylococcus aureus.International Journal of Food Microbiology.102 (2): 213-220.
Maina, M. H. (2011). Phytochemical and antimicrobial studies on Rhus natalensis.
Maple, P., Hamilton-Miller, J., and Brumfitt, W. (1989).World-wide antibiotic resistance in methicillin-resistant Staphylococcus aureus.The Lancet.333 (8637): 537-540.
Marrie, T. J., Nelligan, J., and Costerton, J. (1982).A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead.Circulation.66 (6): 1339-1341.
Nanyonga, S. K., Opoku, A. R., Lewu, F. B., Oyedeji, O. O., Singh, M., and Oyedeji, A. O. (2013). Antioxidant activity and cytotoxicity of the leaf and bark extracts of Tarchonanthus camphorates. Tropical Journal of
Pharmaceutical Research.12 (3): 377-383.
Ncube, B., Finnie, J., and Van Staden, J. (2011). Seasonal variation in antimicrobial and phytochemical properties of frequently used medicinal bulbous plants from South Africa. South African Journal of Botany.77 (2): 387396.
Nemudzivhadi, V., and Masoko, P.
(2015).Antioxidant and antibacterial properties of Ziziphus mucronata and Ricinuscommunis leaves extracts. African Journal of Traditional, Complementary and Alternative Medicines.12 (1): 81-89.
Obritsch, M. D., Fish, D. N., MacLaren, R., and Jung, R. (2005). Nosocomial infections due to multidrugâ€resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 25 (10): 1353-1364.
Ortholand, J.-Y., and Ganesan, A. (2004). Natural products and combinatorial chemistry: back to the future. Current opinion in chemical biology.8 (3): 271-280.
Pellett, S., Bigley, D., and Grimes, D. (1983).Distribution of Pseudomonas aeruginosa in a riverine ecosystem.Applied and environmental microbiology.45 (1): 328-332.
Pendleton, J. N., Gorman, S. P., and Gilmore, B. F. (2013).Clinical relevance of the ESKAPE pathogens.
Pizzo, P. A. (1999). Fever in immunocompromised patients.New England Journal of Medicine. 341 (12): 893-900.
Planta, M. B. (2007). The role of poverty in antimicrobial resistance.The Journal of the American Board of Family Medicine.20 (6): 533-539.
Radulovic, N., Blagojevic, P., Stojanovic-Radic, Z., and Stojanovic, N. (2013). Antimicrobial plant metabolites: structural diversity and mechanism of action. Current medicinal chemistry.20 (7): 932-952.
Rai, M. K., Cordell, G. A., Martinez, J. L., Marinoff, M., and Rastrelli, L.
(2012).Medicinal plants: biodiversity and drugs. CRC Press,
Raj, M. K., Balachandran, C., Duraipandiyan, V., Agastian, P., and Ignacimuthu, S. (2012).
Antimicrobial activity of ulopterol isolated from Toddalia asiatica (L.) Lam.: a traditional medicinal plant. Journal of ethnopharmacology.140 (1): 161-165.
Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. Journal of Infectious Diseases.197 (8): 1079-1081.
Salim, A. A., Chin, Y.-W., and Kinghorn, A. D. (2008). Drug discovery from plants Bioactive molecules and Medicinal plants (pp. 1-24): Springer.
Savoia, D. (2012). Plant-derived antimicrobial compounds: alternatives to antibiotics. Future microbiology.7 (8): 979-990.
Sibanda, T., and Okoh, A. (2007). The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and resistance modifying agents. African Journal of Biotechnology.6 (25)
Silver, L. L. (2011).Challenges of antibacterial discovery.Clinical microbiology reviews. 24 (1): 71-109.
Smith, K., and Hunter, I. S. (2008).Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates.Journal of medical microbiology.57 (8): 966-973.
Snitkin, E. S., Zelazny, A. M., Thomas, P. J., Stock, F., Henderson, D. K., Palmore, T. N., and Segre, J. A. (2012).Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing.Science translational medicine.4 (148): 148ra116-148ra116.
Strobel, G., and Daisy, B. (2003).Bioprospecting for microbial endophytes and their natural products.Microbiology and molecular biology reviews. 67 (4): 491-502.
Taylor, J., Rabe, T., McGaw, L., Jäger, A., and Van Staden, J. (2001).Towards the scientific validation of traditional medicinal plants.Plant Growth Regulation.34 (1): 23-37.
Van Wyk, C., Botha, F. S., and Steenkamp, V. (2009). In vitro antimicrobial activity of medicinal plants against oral Candida albicans isolates.
Van Zyla, R., Seatlholof, S., Van Vuuren, S. F., and
Viljoen, A. (2010).Pharmacological interactions of essential oil constituents on the viability of micro-organisms.Natural product communications.5 (9): 1381-1386.
Vedavathy, S. (2003).Scope and importance of traditional medicine.Indian J Trad Know. 2: 236-239.
Wetungu Martin, W., Matasyoh, J., and Kinyanjui, T. (2014). Antimicrobial activity of solvent extracts from the leaves of Tarchonanthus camphoratus (Asteraceae). Journal of Pharmacognosy and Phytochemistry.3 (1): 123-127.
Wiegand, I., Hilpert, K., and Hancock, R. E. (2008).Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.Nature protocols.3 (2): 163-175.
Wise, R., Hart, T., Cars, O., Streulens, M., Helmuth, R., Huovinen, P., and Sprenger, M. (1998a). Antimicrobial resistance is a major threat to public health. British medical journal.317 (7159): 609-611.
Wise, R., Hart, T., Cars, O., Streulens, M., Helmuth, R., Huovinen, P., and Sprenger, M. (1998b). Antimicrobial resistance: is a major threat to public health. BMJ: British Medical Journal. 317 (7159): 609.
Yigit, H., Queenan, A. M., Anderson, G. J., Domenech-Sanchez, A., Biddle, J. W., Steward, C. D., Alberti, S., Bush, K., and Tenover, F. C. (2001). Novel carbapenemhydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae.Antimicrobial agents and chemotherapy.45 (4): 1151-1161.